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Abstract-Multiplicity of steady states in natural convection within an inclined porous material with 
parallel conductive isotherms is investigated. The different steady states are obtained analytically for 
unicellular convection in thin rectangular porous layers with uniform heating and cooling through opposite 
walls. The basis of the analytical approximation is an assumption of parallel flow over a large portion of 
the layer. The two cases of heat fluxes through side and end walls are both calculated and are seen to 
share some qualitatively similar features. At sub-critical Rayleigh numbers only one steady state exists 
for any tilt angle. For higher Rayleigh numbers and for small enough inclinations around bottom heating, 
however, multiple steady states exist, some of which are unstable. Numerical confirmation of the stable 

analytical results is also presented. 

INTRODUCTION 

SOME ASPECTS of natural convection in an inclined 
fluid saturated porous material and bibliography on 
the topic can be found in a review by Caltagirone [l] 
and in other recent papers [2-4]. The point we wish 
to take up here is that the steady state governing 
equations for this problem, in common with many 
other non-linear systems, do not necessarily produce 
a unique solution under certain boundary conditions 
and orientations. These multiple steady states usually 
can be calculated numerically. Theoretical analysis, in 
general, is difficult and can be carried out only under 
special simplifying circumstances, one of which will 
be discussed in this paper. If the multiple states are 
stable to small perturbations, they may exist in prac- 
tice. In fact similar behavior has been predicted [S-8], 
and experimentally observed [9, lo] for flow in natural 
convection loops and in other related problems. The 
time-dependent governing equations, on the other 
hand, can be presumed to have a unique solution as 
an initial value problem. So when multiple steady 
states do exist, initial conditions determine the final 
steady state achieved. 

To take a simple case, consider a two-dimensional 
fluid saturated porous material of any shape. The 
boundary of the material can be considered imper- 
meable, a fact which translates into a condition on the 

t Present address : Department of Aerospace and Mech- 
anical Engineering, University of Notre Dame, Notre Dame, 
IN 46556, U.S.A. 

normal component of the fluid velocity. A prescribed 
temperature, heat flux or other thermal boundary con- 
dition has to be applied as well, its intensity being 
represented by a Rayleigh number (R). One can 
imagine the application of a symmetrical heating and 
cooling to a porous material of suitable geometry 
such that the rest state with conductive heat transfer 
(temperature governed by the Laplace equation and 
satisfying the thermal boundary conditions) is a solu- 
tion of the steady state governing equations. If, how- 
ever, the thermal boundary conditions or geometry 
are not symmetric to start with, one can sometimes 
rotate the porous material in a vertical plane to obtain 
the rest state. In fact it will always be possible to do 
so if the conductive problem has parallel straight line 
isotherms which can then be turned to a horizontal 
position. There will be two such rest states, each with 
180” rotation of the porous material with respect to 
the other. One corresponds to what is physically bot- 
tom heating, and the other to top heating. For top 
heating, an increase in R will not produce any new 
steady states. For bottom heating there is a critical 
Rayleigh number (&) below which the rest state is 
stable and is the only steady state. For R > &, 

however, this rest state is unstable, though it continues 
to be a solution of the governing equations. Two 
linearly stable states bifurcate from the rest state at 
R = &, each representing convection cells which 
rotate in opposite directions. 

It is not very surprising to have similar behavior for 
small tilt angles also. Let us measure the inclination 
of the porous material (4) counterclockwise from a 
bottom heated orientation. Then for any 4, however 
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NOMENCLATURE 

A aspect ratio defined as ratio of longer to 0 I’ dependence of temperature defined in 
shorter side equation (8) 

B, B, integration constants Ct, angle of inclination 
c constant temperature gradient in (i;., analytical maximum inclination for 

.r-direction tnultiple steady states 
m, n mode numbers 6% numerical maximum inclination for 
NM Nusselt number multiple steady states 
T temperature (1% inclination for maximum Nusselt 
AT temperature difference across layer number 

defined in equation (2) 4s inclination for maximum stream function 
R Rayleigh number al center 

R, critical Rayleigh number for zero (1) I inclination for maximum temperature 
inclination difference 

R, critical Rayleigh number for non-zero $ stream function 
inclination !lJ, stream function at center. 

ll velocity in .u-direction 

s, p Cartesian coordinates. Subscripts and superscripts 

perturbation to steady state 
Greek symbols 0 amplitude of perturbation 

a, B constants I/ mode number. 

small, there is motion and the rest state does not exist 
as a steady state possibility. Again the number of 

steady states depends on R. For small R only one 
steady state exists, while for R > R, (where R, > R,), 

three such states can exist. This behavior has been 

discussed in the literature for rectangular porous 
materials with opposite walls at different tempera- 
tures. Finite difference calculations were carried out 

by Moya et al. [2]. Some work has also been done by 
Walch and Dulieu [I I] with reasonable qualitative 
agreement with numerical results. Caltagirone and 
Bories [4] used a Galerkin method to obtain the three 
solutions, but their calculations at different aspect 
ratios seem to imply that the phenomenon would not 
exist for thin horizontal layers. 

The range of steady states which exists is more 
complex for large values of R. For a given set 01 
parameters R and 4, steady cellular convective pat- 

terns can exist with different numbers of cells. To 
facilitate an analytical approach we will consider only 
the multiplicity of steady states associated with uni- 
cellular convection for thin porous layers with a con- 
stant heat flux boundary condition. Simplified ana- 
lytical approximations for this problem were 
discussed and developed by Vasseur et al. [3], who 
carried out an extensive study of flows which can be 
started from rest conditions. Good agreement was 
obtained with the results of numerical integration of 
the complete partial differential equations. Their 
theoretical and numerical methods will be used and 
their analyses extended in the present work to cover 
the flows which cannot be obtained on starting from 
rest conditions. 

Since we are interested in unicellular convective 

motions only, the stream function at the center of 
the layer ($J will be used to identify the sense and 
magnitude of the circulation. The coordinates are 
chosen such that counterclockwise (or clockwise) 
movement will be associated with positive (or nega- 
tive) I/I,. In addition the terminology followed in ref. 

[2] will be used for physical coordinate-free interpre- 
tation of the convective patterns. Flows which can 
develop from rest and uniform temperatures as initial 
conditions will be referred to as ‘natural’, while those 
which sometimes exist and which circulate in a direc- 
tion opposite to this will be called ‘antinatural’. These 

terms arc not uniquely associated with the sign of $c 
and arc useful only if we restrict ourselves to uni- 

cellular motion. The adjectives ‘positive’, ‘reverse’ and 
‘negative’ have also been used in this context [4, 1 I]. 

ANALYSIS 

WC will consider a rectangular porous layer with its 

two opposite sides being heated by a uniform heat 
flux and the other two adiabatic. This falls within the 
category of cases for which the conductive solution 
has parallel straight line isotherms. Heating through 
the side or the end walls represent the two possibilities 
shown in Figs. l(a) and (b), respectively, which we 
shall analyze in turn. The center of the layer will be 
taken as the origin of coordinates with the x- and y- 
directions being along the layer and across it, respec- 
tively. For each layer the control parameters will be 
R and 9. For a parameter set we will determine the 
distribution of temperature T (to an arbitrary con- 
stant) and the stream function $, using the energy 
equation and the Darcy law for flow of a large Prandtl 
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(a) 

(bf 

FIG, I, Definition sketch. 

number fluid through a porous medium. All quantities 
in this text are nondimensionalized as in ref. [3]. The 
stream function at the center of the layer 

+, = $(O?O) (1) 

and the temperature difference ATat the x = 0 section 

AT = T(0, - :) - T(0, f) (2) 

will be used to characterize the properties of the con- 
vective flows. For side wall heating, the Nusselt num- 
ber for transverse heat transfer is related to the tem- 
perature difference by NU = f/AT. 

We will consider that each layer is long in com- 
parison to its thickness. As a consequence we can 
assume that for most of the layer the convective flow 
is parallel to the longer walls. Thus the only com- 
ponent of the velocity is u in the x-direction. This 
approximation, which is justified in greater detail in 
refs. [3, 12, 131, is the basis of the theoretical analysis 
in this section. The results to be derived will be called 
analytical as opposed to those obtained from inte- 
gration of the partial differential equations discussed 
in the next section, and which will be referred to as 
numerical. 

We define the Rayleigh number for the porous 
medium based on the shorter dimension of the layer 
and the uniform heat flux. The x- and Y-coordinates 
are nondimensionalized with respect to this distance 
also. The steady-state energy equation is 

V2T=E2~T_!?94?2: 
ay ax ax ay. (3) 

Side wall heating 
Consider first the layer shown in Fig. l(a). From 

the Darcy law we obtain 

V”$ = -R 
( 

gcos$ - gsin4 
8Y > 

(4) 

with the boundary conditions 

dT A 
Jt=O, &=O at x-k2 

$=O, g= -1 at y=-ti 
8Y 

(5) 

(6) 

where A is the aspect ratio defined as the ratio of the 
longer to the shorter sides and taken to be large in 
this case. The transformation 

~--cb,ll/-*-~,T-,T,x-*-x,y~y (7) 

does not alter the governing equation nor boundary 
conditions (3)-(6). This s~rnet~ is evident in 
opposite quadrants of results such as Fig. 2. 

With a parallel flow approximation we can take 

T= Cx+f?(y) (8) 

where C is the constant temperature gradient in the 
x-direction and 8 is they variation of the temperature. 
Similar approximations have been used by Walker 
and Homsy [14] and Bejan and Tien [13] for shallow 
porous materials with an end-to-end temperature 
difference. As pointed out in ref. [3] the present 
approximation coincides with the results given by 
Bejan 1151 for prescribed heat flux monitions using a 
boundary layer analysis. For the stream function, we 
have 

G = @(Y). 

From equations (3) and (4) we get 

(9) 

(11) 

An additiona constraint is that the heat transported 
across a transversal section at any x should be zero, 
so that 

(12) 

There are now three cases to discuss. 

(a) 4 = 0” and 180” (horizontal layer) 
For 4 = 0” the temperature and the stream function 

distributions from equations (6), (10) and (11) are 

T= Cx-y l+$(4Yz-3) 1 (13) 
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, NUMERICAL 
RESULTS 

- ANALYTICAL SOLUTION 

-lot 

FIG. 2. Stream function at center of layer I/, as a function of tilt angle (p for side wall heating. Broken lines 
are unstable. 

(14) 
x = A/2 end would be hotter than the other, and thus 
C in temperature distribution (8) would be positive. 

Substituting in condition (12), we get 
Similarly for sin 4 < 0, flow starting from rest would 
have a negative C. This thus represents natural flow 

C(lOR-R2C2- 120) = 0 (13 
and was discussed thoroughly in ref. 131 with the fol- 
lowing results : 

which gives the three solutions 
B 

C=O or C= ++jJ(IO(R-12)). 
t+bc = --. I-cash? (19) 

(16) 
C [ I 2 

The last two solutions refer to convective motion 
Nrd = _ ~_ ._..? PO) 

and exist only for R > 12. A value of R, = 12 is also 
reported by Nield 1161 as the limit for linear stability 

2Bsinhz +uCcot# 

of the conductive state with these boundary where the constants are determined from 

conditions. For the values of C in equations (161, we 
also have 

LX’ = RCsinb, 

12 _____-- 
N” = 12-RC2’ 

(17) 
B = _ ‘.+~-~.“?!! 

cash; 

(18) c_g!!!~-l) 

(21) 

(22) 

For (b = 180“, the only real value of C is zero for 
whichJI,=OandNu= 1. -Bcotd, 

L 
cash; - isinhi 

I 
= 0. (23) 

(b) C sin # > 0 (natural flow) 
From Fig. l(a) we can observe that for the incli- (c) C sin Cp < 0 (antinatural Aow) 

nation shown, sin b, > 0 and counterclockwise motion The circulation is now in an opposite sense. In Fig. 

would be developed on starting from rest. The I(a), for instance, antinatural flow corresponds to a 



clockwise rotation. An analysis similar to the above With the parallel fiow approximations (8) and (9), 

can be carried out such that we obtain equation (29) becomes 

Nu = - 
B 

2Bsini +jICcot4 

with the constants being calculated from 

j?’ = -RCsin+ 

B B ijE =c l-cosj 
1 1 (24) 

3-RcosbE -RCsind = 0. 
dy2 dy 

(34) 

Equation (10) remains the same. 
The sign of Ccos 4 no longer distinguishes the natu- 

ral from the antinatural circulation. However, once 
again for simplicity we analyze the following three 
cases. 

(25) 

(26) 

C-sty--I)-Bcot,[cosz-fsini]=O. 

B= _ l+Ccotd 
6 

cost- 
2 

(a) 4 = 0” and 180” (vertical layer) 
For 4 = 0” the temperature and stream function are 

(27) 
T = Cx + ; sin (cry) - : cos (ay) (35) 

B, B2 
1,5 = -cos(ay)+ -sin(ay)+B, 

C C 
(36) 

(28) 
where 

a2 = -RC. (37) 

Applying the temperature boundary condition (3 l), 
two equations are obtained. These can have the trivial 
solution which leads to the conductive state 

T= -x, $=O. (38) 

Strictly speaking, all three cases above are covered 
by the set of equations (19)-(23) or (24)-(28) which 
are really equivalent if we put c1 = i/3. However, if real 
numbers are to be handled it is easier if the problem 
is split up into the three cases as is done here. More- 
over, the present procedure has the advantage that 
the difference between the natural and antinatural 
states are brought out. A NewtonRaphson procedure 
can be used to solve the simultaneous transcendental 
equations (21)-(23) and (26)-(28). Since some of the 
roots are near each other and slopes are high at the 
roots, it helps to initially identify their location and 
number by plotting functions (23) and (28). 

This is the only state obtained by setting 4 = 0 in 
equations (49)-(53) or (54)-(58) below. Non-trivial 
solutions are possible when the determinant of the 
system is zero. This gives sina = 0, from which 
a=m,n= 1,2,3 ,... 

End wall heating 
We refer now to Fig. l(b). The equation for the 

stream function is 

For the odd modes n = 1,3,5,. . . , we obtain on 
using equations (31), (33), and (35)-(37) 

n2n2 BY’ 
T(“) = - RX + nrr sin (my) (39) 

B(,“‘R $‘“’ = _ ~ n2n2 cos (nny) 

gsin$+gcos$ 
> 

. (29) where 

By) = f TJ(2(R-n2n2)). (41) 

The stream function at the center is 

The boundary conditions are 

lj=o, g-1 A 
at x=*? (30) 

$=O, $=O at y= +f. (31) 

Symmetry is evident by the invariance of equations 
(3) and (29)-(31) under the transformation 

d-+-4, yi+-$, T-T, x-+x, y-+-y. 

(32) 

All the heat is transported in the x-direction so that 
at any x, we have 

(33) 
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$2) = T kJ(2(R-n2n2)) (42) 

and the temperature difference across the central sec- 
tion of the layer is 

AT’“’ = T a(- I)“-1”2J(2(R-n2~2)). (43) 

Only the first mode n = 1 is unicellular. All these odd 
modes are present in equations (49)-(53) as 4 + 0. 

For the even modes n = 2,4,6,. . . in a similar 
manner 

n%2 
T”” = - Rx - $ cos (nzyy) (44) 
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(45) 

B’;’ = + 3(2(R-n’n’)) (46) 

qji”’ = 0 (47) 

AT’” = 0. (48) 

All even modes give multicellular motion. 

The lowest R at which convective motion exists is 
given by the unicellular motion which from equation 
(41) is seen to be r-c*. A linear stability analysis of the 
conductive state is outlined in the Appendix, con- 
firming the value of R, = 7t2 for these boundary con- 
ditions 

For 4 = 180” only the conductive mode exists, 

(b) Ccos4>0 
This case was analyzed in ref. [3]. The stream 

function at the center is 

(49) 

The temperature difference at x = 0 is 

AT= - 2Gsinhi +Ctan$ (50) 

where the constants are determined from 

m2 = RCcosc,h 

B=C?aY? 

cash” 
2 

(51) 

(52) 

tBtan4 coshi -zsinhi 1 = 0. (53) 

(c) c cos cj < 0 
The corresponding relations are now 

(54) 

AT= - 2Bsing +Ctanb 
B 

I(’ = - RCcosc$ 

B=5E!! 
/I 

cos ~~ 
2 

(55) 

(56) 

(57) 

I = 0. (58) 

Once again equations (49))(53) and (54)-(5X) are 
identical if WC put s( = ip. 

NUMERICAL PROCEDURE 

A finite difference procedure was used for numerical 
integration of the time-dependent governing equa- 
tions The temperature distribution was obtained 

from the unsteady form of the energy equation (3) 
using the alternating direction implicit (ADI) method 
of Peaceman and Rachford [ 171. Using this tem- 

peraturc. the stream function was determined from 
equation (4) or (29) using successive over-relaxation 
(SOR), before returning to the energy equation. Inte- 
gration in time was continued to steady state. Trial 
calculations were necessary in order to optimize coni- 
putation time and accuracy. A 5 1 x 5 I grid was found 
to accurately model the flow fields described in the 
numerical results. For instance, with R = 350. 

4 = 90 and A = 4. Nusselt numbers of 4.59 and 4.54 
were obtained with 5 I x 51 and X 1 x 81 meshes, 
respectively. To have an additional check on the 

results, an energy balance was used for the system. The 
heat transfer through each ,r = constant plane was 
evaluated for - 1 i2 < ,v < l/2 and compared to the 
heat input at J’ = -Ii?. For most of the results 
reported here, the energy balance was satisfied to 
within lI2”/0. Other details of the numerical scheme 
arc given in refs. [3, 121. 

A remark must be made with regard to the numeri- 
cal procedure which would apply also to other cases 
where any integration in time is used to solve a prob- 
lem with multiple linearly stable steady states. Each 
of these states has its own basin of attraction and only 
initial conditions within this basin will evolve to the 
desired steady state within it. Thus, initial conditions 
have to bc chosen carefully for each numerical run. 
There are two special cases for which non-rest initial 
conditions are necessary. First. for a nearly horizontal 
layer heated through the side walls, one has to star-t 
from conditions corresponding to a tilted layer to 
obtain unicellular motion as was done in ref. ]i]. 
Second, to obtain antinatural flows the technique used 
in refs. [2, 111 was to begin from a state corresponding 
to the natural circulation direction followed by a small 

numerical change in the tilt angle. 
The procedure outlined above has some limitations 

which would be applicable to other numerical 
methods which could have been used. IInstable 
flows. even though analytically predicted as solutions 
of the steady-state equations, cannot be obtained. 
However. if the stream function and tcmperaturc 
fields converge to a steady state. this itself is evidence 
of asymptotic stability to small perturbations. If more 
than one such linearly stable state coexists, it is evident 
that none of them can be asymptotically stable to 
large enough perturbations which could take the 
instantaneous state out of the respective basin 01 
attraction. This becomes important in the dctcr- 
mination of antinatural states near the turning point 
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bifurcation represented by the boundary of existence 
of these states in parameter space. Here the steady 
state nears the boundary of its own basin of attraction. 
If suitable initial conditions are not chosen, the 
numerical solution evolves to some other state which 
could be the natural state or multicellular flow. Under 
such conditions, one has to make a large number of 
computations with very small rotations of the layer 
after each computation and use the previous state as 
initial condition to assure convergence to the desired 
antinatural state. Even if such a linearly stable steady 
state exists, the procedure may become prohibitively 
time consuming after a point. 

ANALYTICAL AND NUMERICAL RESULTS 

We will present results obtained from the analyses. 
Comparison will also be made between the theoretical 
analysis and numerical calculations. The latter were all 
for a cavity with aspect ratio A = 4, since it was dem- 
onstrated in ref. [3] that near this value the stream 
function and temperature fields over the central part 
of the porous material become independent of A. 
Results for the natural flows have been previously 
treated and will be included here for completeness but 
not discussed in much detail. The presentation will be 
separated into the two heating modes for the porous 
layer. 

Side wall heating 
The stream function at the center $, is one indicator 

of the strength of the circulation due to convection. 
Figure 2 shows $, as a function of d, for different R 
obtained from the analysis. The first and third (or 
second and fourth) quadrants represent the natural 
(or antinatural) flows. In the first (or third) quadrant 
we have positive (or negative) tic which represents 
counterclockwise (or clockwise) motion. For R < R, 
(R, = 12 in this case), the curve is single valued. But 
for R = &, a point of inflexion is developed at the 
origin where it is tangent to the tj = 0” axis. For R > & 
and for small tilt angles, three values of $,c are possible. 
Verification of the results of analysis by numerical 
computation is also indicated on the upper half of the 
figure. Some of the values for the natural tIows are 
from ref. [3] as indicated. Table 1 for the antinatural 
flows gives a detailed idea of the degree of agreement 
(better than 1% for +,) that is obtained between the 
two methods. Stability characteristics can also be 
deduced from the numerical information. For some 
values of R, part of the outer branch covering both 
natural as well as antinatural states is stable. At high 
enough R all of it becomes unstable. The inner anti- 
natural branch is always unstable and is shown by 
broken lines. Strictly speaking, instability has been 
analytically shown only for one point on this branch 
[16], which is the conductive steady state represented 
by the origin. 

Analysis indicates that the multiple steady states 
exist for tilt angles - & < d, c (b_ where 4, is shown 

in Fig. 3. Cp, rises to a maximum of 35” and then goes 
up and down around 30”. Numerically, however, it 
was possible to get multiple steady states only for 
-4, < (f, < #,, (with #, < &J where +bn is also shown 
in Fig. 3. Even with great care in the selection of initial 
conditions and using increments of half a degree, only 
natural unicellular or multicellular motions are 
obtained in the ]4,] < Id] < I&] range. The reason 
for the difference between &, and 4, can only be 
speculated at this point. It is similar to that observed 
in natural circulation loop experiments in ref. [lo]. All 
that can be said is that it is consistent with the insta- 
bility of the antinatural unicellular motion which 
becomes an increasingly important factor for large R. 
q$, would then be a stability limit as opposed to #a 
which is an existence limit. 

Figure 4 shows Nu as a function of tilt angle for 
different R. The antinatural flows are shown with 
broken lines. Numerically obtained values are also 
indicated. Comparison of anaIytica1 and numerical 
Nusselt numbers for antinatural flows is also included 
in Table 1. Agreement is better at low Rayleigh num- 
bers and inclinations. 

The maximum values of Nu and gc occur at I$ = fpN 
and $ = Qls, respectively, where & and & are shown 
in Fig. 5. For small R the temperature field is con- 
duction dominated. The largest buoyancy force and 
circulation is with inclination near 90” since the tem- 
perature gradient must be horizontal. The large cir- 
culation reduces AT and increases Nu as expected. 
Thus the maximum Nu inclination correlates well with 
the maximum JI, inclination for small R. For large R 
the difference between the two curves is striking. The 
maximum $, occurs at smaller inclinations and for 
R > 225 even shifts to the antinatural side. & 
however, turns slowly towards 90”. The temperature 
field is convection dominated for large R. Again the 
temperature gradient should be horizontal for 
maximum circulation, this being now near 0”. 
However, increasing the circulation does not neces- 
sarily increase Nu substantially ; in fact for d, = O”, 
Nu + 6 asymptotically as R --) cc [3]. In relation to 
this it should also be noted that for small ~1 in equa- 
tions (19)-(23), i.e. small R and cot 4 of order 1 or 
less, the velocity profiles u(y) are similar and scale 
only with II/,. The temperature profiles also scale with 
AT. For large u, however, $c alone does not determine 
the velocity field, nor AT the temperature field. Thus 
in the latter case, some quantity such as the volumetric 
average of the kinetic energy [I81 should perhaps be 
used to measure the global strength of the circulation, 
or some other combination of the present control 
parameters chosen. 

Figure 6(a) shows tfic as a function of R for 9 = 0”, 
5” and 10”. For the horizontal layer there is no motion 
possible up to the critical Rayleigh number R,. where 
a bifurcation into two counterrotating convection 
states occurs. The diagram changes considerably for 
any inclination, however small. For positive incli- 
nations shown, the upper half represents natural cir- 
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Table 1. Analytical and numerical antinatural Nusselt number and stream function 
at center for side wall heating 

ilr, 
knalytical Numerical 

I .21 1.28 
I.23 1.24 
1.19 1.20 

R 4 

-5 2.35 2.36 
-10 2.23 2.24 

50 
-II 
-12 
-13 
-14 

-5 
-10 
-11 

72 -12 
-13 
-14 
-15 

-5 
--IO 

100 
-11 
-. 12 
-13 
-14 

-5 
-10 

150 
-Ii 
-12 
-13 
-14 

-5 

500 1; 
-8 

-- 

-- 

2.21 
2.18 
2.14 
2.11 

2.99 
2.89 
2.87 
2.85 
2.82 
2.79 
2.76 

3.65 
3.56 
3.54 
3.52 
3.50 
3.47 

4.60 
4.53 
4.51 
4.49 
4.47 
4.45 

x.79 
8.79 
8.79 
8.79 

2.21 
2.18 
2.16 
2.13 

3.00 
2.90 
2.88 
2.85 
2.83 
2.80 
2.77 

3.66 
3.57 
3.55 
3.53 
3.51 
3.4x 

4.61 
4.55 
4.53 
4.51 
4.49 
4.45 

x.79 
8.79 
x.79 
8.79 

Analytical 
.._-.. ~. 

1.625 
1.589 
1.549 

2.617 
2.480 
2.449 
2.415 
2.380 
2.343 

3.162 
3.028 
2.999 
2.968 
2.935 
2.902 
2.867 

3.628 
3.485 
3.454 
3.422 
3.389 
3.354 

3.133 
3.962 
3.925 
3.887 
3.848 
3.808 

4.997 
4.922 
4.845 
4.768 

NZi 
Numerical 

1.618 
1.589 
I.551 

2.617 
2.481 
2.449 
2.416 
2.381 
2.352 

3.160 
3.027 
2.997 
2.965 
2.933 
2.899 
2.863 

3.627 
3.483 
3.452 
3.422 
3.384 
3.349 

4.135 
3.965 
3.929 
3.893 
3.855 
3.764 

5.110 
5.032 
4.952 
4.936 

NUMERICAL RESULTS 

- ANALYTICAL SOLUTION 

R-R, 

FIG. 3. Range of tilt angles for multiple steady states with side wall heating. $a is analytical and 4, is 
numerical. 
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NUMERICAL 

-ANALYTICAL SOLUTION 

FIG. 4. Nusselt number Nu as a function of tilt angle r$ for side wall heating. Broken lines are antinatural 
circulations. 

4 
IOOD - 

R 

FIG. 5. Tilt angle for maximum stream function (bs and for maximum Nusselt number (bN for side wall 
heating. 

2105 

culation while the lower half is antinatural. The bias the convection towards the natural state. The 
unstable part of the antinatural branch is indicated antinatural state can be reached only through initial 
by broken lines. Numerical confirmation of the stable conditions different from rest and exists only if 
solutions is also indicated. Heating from zero tem- R > 1$;. Rep can also be measured from Fig. 3 by reading 
perature rest conditions would be equivalent to gradu- off the Rayleigh number for a given inclination on the 
ally increasing R from zero. Any inclination would ordinate. In Fig. 6(a), R+ acts as a critical Rayleigh 
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l NUMERICAL RESULTS 

- ANALYTICAL SOCUTION 

FIG. 6. (a) Stream function at center and (b) Nusselt number Nu as a function of Rayleigh number R for 
side wall heating with tilt angle Cp = O”, 5” and lo”. Broken lines are unstable. Rc and R, are critical Rayleigh 

numbers. 

number for the inclined layer in the sense that R, 
and R, can both be defined as the smallest Rayleigh 
number at which multiple steady states appear, the 
first for zero inclination and the second for an inclined 
layer. However, I& also represents the smallest Ray- 
leigh number at which convective motion first ap- 
pears, while R, does not. The corresponding Nusseh 
number is shown in Fig. 6(b). For negative inclina- 
tions, Fig. 6(b) is not altered, though the sign of lfrC 

in Fig. 6(a) changes. Thus if one starts from initial 
conditions corresponding to the natural state for 
(rr, = 5”, for instance, one is relatively close to the anti- 
natural state for &, = -5”. This is the basis of the 
numerical procedure for obtaining the antinaturai 
solutions. 

The numerical method permits a detailed picture of 
the streamlines and isotherms. As an example, Figs. 
7(a) and (b) show these for the natural and anti- 
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0 82 

FIG. 7. Isotherms and streamlines for side wall heating corresponding to R = 100 and cj = - 5’ : 
(a) natural, Jlc = - 3.75; fb) antinatural, $, = 3.66. Comer temperatures am noted. 

natural stable flows that c@-exist for R = 100, 
4 = -5”. For reference the maximum and minimum 
temperatures at each corner of the rectangle are also 
indicated. The approximate validity of our basic 
assumptions of parallel flow in the central region is 
evident. The detils of transition from an antinaturaf 
unicellular pattern is illustrated by Fig. 8. On increas- 
ing the tilt slowly from - 14” to - 17”, the change is 
first to an intermediate multicellular pattern and then 
to natural uni&lular motion. Each one of the states 
shown is stable to srn41 temperature and velocity 
perturbations. Loss of stability of the antinatural con- 
vection pattern to increasing tilt in this case is thus by 
exchange of stability to the multicellular stable state. 

Elnd wali heat& 
Results similar to the previous case are obtained 

for the stable outer states. Figure 9 shows (jlE for 
different #I and R. Ccos$ is negative for 
-90” < 4 < 40” and positive outside. As far as the 
outer branches are concerned, the first and third quad- 
rants again represent natural flow since they can be 
started from rest, while the other two quadrants are 
antinatural. In the outer branch, due to instability it 

HtiT 30, UP, 

was possible at R = 500 to obtain neither unicellular 
flow for d, = 0” nor antinatural ftows. In fact even 
unicellular natural flows for non-zero @ were difficult 
to simulate numerically for this A. In comparison to 
side wall heating, the inner branches are much more 
intricate. For R = 500, there are nine steady states at 
zero Ip, while R = 100 has five. The v&es at the 
intersections as well as their number, can be deter- 
mined from equation (42). At each critical A, the Ike 
vs # curve becomes tangent to the ordinate at the 
origin. Numerical va-ifi~&~on of same of the ana- 
lytical results is also provided on the figure. Table 2 
shows the results for the antinatural Bows for 
R = 100. Once again agreement is very good. 

As pointed out in ref. 19, the Nusselt number for 
heat transfer between the non-adiabatic walls is very 

much dependent on the flow pattern in the end regions 
and thus cannot be suitably predicted here. However, 
dT can be used as an indicator of the transversal 
temperature distribution and is shown in Fig. IO. 
Since the heat transfer is globally in the x-direction, 
AT is relatively small and varies IittIe with R. In the 
figure the central part of the R = 500 curve near the 
origin has been omitted for clarity. The shape of the 
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FIG. 8. Isotherms (above) and streamlines (below) for (a) antinatural, C$ = - 14, (b) multicelluiar, 
# = -IS’, and (c)natural, C$ = - 17‘. 

Table 2. Analytical and numerical antinatural temperature difference and stream 
function at center for end wali heating 

R 4 

-1 
-2 
-3 
-4 
-5 
-6 

100 -7 
-8 
-9 

-10 
-11 
-12 
-13 

iC AT 
Analytical Numerical Analytical Numerical 
_.__I___ __ ..-. ~~ .._- _.~. .._.~ _~__.._. _~~~ 

4.26 4.29 0.269 0.27 I 
4.25 4.28 0.270 0.272 
4.24 4.26 0.27 1 0.272 
4.22 4.25 0.271 0.273 
4.21 4.23 0.272 0.274 
4.19 4.22 0.273 0.275 
4.17 4.20 0.274 0.275 
4.15 4.18 0.275 0.276 
4.14 4.17 0.276 0.277 
4.12 4.15 0.277 0.278 
4.09 4.13 0.278 0.279 
4.07 4.11 0.279 0.280 
4.05 4.09 0.280 0.282 
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-ANALYTICAL 

FIG. 9. Stream 

NUMERICAL 
RESULTS 

SOLUTION 

w -10 

function at center of layer $, as a function of tilt angle 4 for end wall heating. 

NUMERICAL 
RESULTS 

ANALYTICAL SOLUTION 

FIG. 10. Temperature difference AT as a function of tilt angle for end wall heating. Central part of R = 500 
curve is omitted. 
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R-RC 

FIG. 1 I. Range of tilt angles for multiple steady states with end wall heating calculated analytically. The 

number of possible modes is indicated. 

On,-i 
0 20 40 60 60 100 

R 

FIG. 12. Tilt angle for maximum stream function & and for maximum temperature difference $r for end 
wall heating. 

curves in the antinatural part are quite different from 
what they would be for side wall heating as deduced 
from Fig, 4. 

The range of inclinations - (f;a < 4 < (p, over which 
multiple states exist analytically is shown in Fig. 11. 
In the range of parameters shown the lines separate 
regions with one, three or five steady states. The criti- 
cal R values at which they meet the abscissa correspond 

to those from equation (41), or equivalently from 
the Appendix, equation (AT) with the wave number 
m = 0. 

Figure 12 shows the inclination 4s at which the 
maximum stream function occurs. Like in side wall 
heating, the highest circulation is obtained for infini- 
tesimal R with the tem~rature gradient horizontal. 
However, this is not so for finite R, even though the 
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-3.50 

FIG. 13. Isotherms (below) and streamlines (above) for end wall heating for R = 100 around 0”. 

antinatural states are never stronger than the natural 
ones in this case. Figure 12 also shows the angle 4, at 
which the maximum value of AT occurs, being very 
similar to & only for small R. 

The range of possible solutions is much larger if 
multicellular patterns are also included. Figure 13 
shows one kind of stable bicellular convection 
obtained numerically for R = 100. With 4 changing 
from zero in both the positive and negative direc- 
tions, the cell in the natural circulation direction in 
each case grows rapidly. The cell rotating in an 
opposite direction is thus eliminated at a relatively 
small angle. It should also be remarked that for 
large enough aspect ratios, two or more cells may 
exist with parallel flow except in the end and inter- 
cellular regions. 

DISCUSSION AND CONCLUSIONS 

Multiplicity of linearly stable steady states exists for 
natural convection in porous materials. Though some 

of these are numerically shown to be multicellular, we 
have simplified matters by concentrating on uni- 
cellular circulation, since that allows approximate 
analytical calculation. With geometry and thermal 
boundary conditions such that conductive isotherms 
are straight lines, certain generalizations can be made. 
Multiple steady states can be obtained for super-criti- 
cal Rayleigh numbers and for small tilt angles around 
the bottom heated orientation. Moreover, the shape 
of the stable outer part of the curves in Figs. 2 and 9 
are similar though specific values are not. 

Constant temperatures applied to the opposite sides 
of a square geometry in ref. [2] afforded an earlier 
example of the multiplicity of steady states. In the 
present work we have analytically investigated a 
porous layer with uniform heat flux. Both side wall 
and end wall heating gave qualitatively similar results. 
With numerical integration of the complete partial 
differential equations we have been able to confirm 
the stable analytical solutions, obtaining very good 
agreement between them. It can be pointed out that 
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the results in ref. [2] were entirely numerically obtained. 
Antinatural circulation is not difficult to under- 

stand in physical terms. In Figs. l(a) and (b), for 
instance, this would be clockwise flow. Consider a 

parcel of cold fluid starting from the rightmost corner 
of each figure. It gets hotter as it comes down a heated 

wall. It moves along the adiabatic wall essentially 
without change in temperature and then, being hot 
still, rises along the cooled wall. When it reaches the 
rightmost corner it is once again cold so that it 

descends. The corner temperatures marked in Fig. 7 
reflect this pattern. Mathematically, multiplicity is the 

result of nonlinearity of heat convection, which is 
represented by the first term on the right-hand side of 
equation (3) and the first terms of the integrands of 
equations (12) and (33). 

A numerical procedure based on time integration 

of the governing equations not only confirms the exis- 
tence of a steady state if convergence is reached. but 
also assures its linear asymptotic stability. Thus at 
least two stable flows, one natural and the other anti- 
natural, were calculated for certain parameter values. 
However, numerical computation of the antinatural 

states in ref. [2] as well as here is increasingly difficult 
as one nears the turning point, possibly due to flow 
instability. The theoretical analysis presents no such 
difficulties and provides information with respect to 
the range of angles for multiple steady states. Among 
the two types of layers investigated here we find that 
tall vertical layers have a wider range as compared to 

shallow horizontal ones. 
Critical Rayleigh numbers obtained here for the 

onset of convection at zero tilt angles are exactly equal 
to those determined from linear stability analyses for 
the two layers studied. Numerical computations have 
also conformed to these values as expected. The basic 

reason for this agreement is that both layers become 
unstable at zero wave numbers for which the present 
analysis is exact. 

Multiplicity of steady states in this work closely 
parallels that of natural convection in a closed cir- 
culation loop [8, IO]. The relation is not fortuitous 
but due to fundamental similarity in the underlying 
physics. In fact, in principle it should be possible to 
generalize some of the qualitative aspects presented in 
this paper to include other natural convection flows in 
enclosures and porous media with parallel conductive 

isotherms. 
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APPENDIX 

Since we have not found in the literature a linear stability 
analysis of the vertical porous layer with end wall heating 
(Fig. l(b) with 4 = O’), we include a brief outline here. The 
uroblem is self adioint so that the principle of exchange of 
stability holds. The time derivative in the governing equa- 
tions can be eliminated and the linearized local form of 
equations (3) and (29) for small perturbations about the 
conductive state are 

(Al) 
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642) 
T’ = r, cos (mx) sin (nny) (A51 

*’ = J/O cos (mx) cos (n?ry) (A@ 

where the primes indicate perturbations from steady-state withn= 1,3,5,... satisfies equation (Al) and boundary con- 

values. $’ can be eliminated from these equations to give ditions (A4). The wave number in the x-direction is rep- 
resented by WI. Substituting in equation (A3), we get 

a2T 
V4T’= -_R--, 

ayz 
(A31 R _ (m2 i-i12?W 

A2 . tA7) 

The boundary conditions in the y-direction are 

$‘=O, g=O at y= Fi. 

The following normal forms 

The least value of this is then 

%= 

(A41 
&;= ‘,R) 

I= 1,3,5... 
= x* 

fern= landm=O. 

ETATS STATIONNAIRES MULTIPLES DE LA CONVECTION NATURELLE 
UNICELLULAIRE DANS UNE COUCHE POREUSE INCLINEE 

R&n&-On Ctudie la multiplkit& des &tats stationnaires de la convection naturelle dans un ma&au 
poreux ineli& avec des isothermes parall&les conductives. Les diffkrents &tats stationnaires sont obtenus 
an~~quement pour la convection unicellulaire dans des couches minces, rectangulaires, poreuses avec 
chauffage et ~froidi~ent uniformes sur les parois oppo&es. La base de ~approximation antique est 
une hypothk dkoulement paraWe sur une large portion de la couche. Les deux cas de flux thermique 
ii travers les parois latkles et d’extrkmk% sont calculbs et ils ~sti~gu~t quelques confIgurations quali- 
tativement semblables. Aux nombres de Rayleigh kkvks et pour les in&naisons s u&amment faibks, il existe 
des &tats instationnaires multiples dont quelques uns sont instables. On prkente aussi une confirmation 

numkrique des rksultats analytiques stables. 

MEHRFACH STATIONhiRE ZUSTANDE BE1 MONOZELLULARER NATORLICHER 
KONVEKTION IN EINER GENEIGTEN POROSEN SCHICHT 

Zmammenfassnng-Mehrfach station&e Zustiinde bei der natiirlichen Konvektion in einem gene&ten 
poriisen Material mit parallelen, gut leitenden Begrenzungen wird untersucht. Die verschiedenen sta- 
tion&en Zust%nde werden analytisch aus der monozeBu1~ Konvektion in d&men, rechteckigen poritsen 
S&&h&en mit ei~ei~cher Heizung und Kiihlung an gegen~~rliegend~ W&den bestimmt. Gnmdlage 
der analytischen Niiherung ist die Annahme paralleler Str~rn~g iiber einen weiten Bereich der Schicht. 
Die Wiirmestrcme durch Seiten- und End&hen werden jeweils berechnet, sie sind qualitativ tihnlich. Fiir 
unterkritische Rayleigh-Zahlen existiert fiir jeden Neigungswinkel nur je ein stationarer Zustand. Bei 
haheren Rayleigh-Zahlen und ausreichend kleinen Neigungswinkeln existieren beim Beheizen von unten 
mehrere stationiire Zustinde, von denen einige instabil sind. Numerische Rechmmgen, die die stabilen 

analytischen Berechmmgen bestitigen, werden gezeigt. 

PA3JIH‘IHbIE CTAqMOHAPHbIE PEXMMbI O)JHOII9EWCTOti ECTECTBEHHOR 
KOHBEKI&IM B HAKJIOHHOM I-IOPHCTOM CJIOE 

Aimo~aum+I43y~aeTca h52iorooGpa3He crworiapmrx penoi~os ec~ecT8en~oir KOHB~K~HH a HaKnoH- 
HOM noprrno~ cnoe c na~e~bH~Mn n3oTepMHq~HMn Te~onpoBo~~M~ ~aHm~Mn. AH~.IIHTH- 
V~KH nonyseHM ~3~~~H~e ~a~HoHapH~e ~~;KHMM o~oX~e~~0~ ItOHBeKU~H B TOHKHX 
~pnMoyronbn~x nopHcrbix cnosx nprt paaHoMepnoM Barpeee H oxna~emm npoTHaono~o~H~x 
rpaeas. AH~JIHTHWCKO~ pewewe nonytteso B npennonomceHnH o H~JIHWH napameabaoro TeqexHn Ha 
6onbme& qacrx cnon. PaccuHTawb8 nlsa cnyltan Tennoabrx ~OTOKOB 9epe3 6oKoBbie H Topuesbre CTeHKH, 
KOTOpble npOKaHJIn 06IWie ICa’IeCTBeHHbIe XapaKTepHCTHKw. nOKa3aH0, ‘IT0 rIpH nOKPHTHWCKHX qHCJlaX 
P3nen H nm6ohl yrne HaKnoHa cnon CymwT~ye~ nHmb O~HO cTamioHapHoe coc-rosHHe. OnHaKo, npH 
6onee BbicoKHx qucnax P3nen w LlocTaToqHo hianbtx yrnax HaxnoHa iiwrrkteil HarpesaeMoii creHKn 
Ha6nlonanHcb HeCKOJIbKO CTaUHOHapHbIX lY%tiHMOB, HeKOTOpbIe H3 ROTOpblX HeyCTOkWabt. AJIK ycToii- 

qHabrx ~~~KWMOB nonyqeaabre SAcneHHbte pe3ynbTaTbl nonTsepzz_naroT akm.rmTHqecKHe. 
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